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Real-time observation of enzymatic turnovers of single molecules has revealed non-Markovian dynamical
behavior. Although chemical kinetics (such as the Michaelis-Menten mechanism) are sufficient to describe
the average behavior of an ensemble of molecules, statistical analysis of the single-molecule fluorescence
time trace reveals fluctuations in the rate of the activation step. These fluctuations are attributed to slow
fluctuations of protein conformations. In this paper, we discuss models of the dynamical disorder behavior
and relate them to observables of single molecule experiments. Simulations based on a discrete multistate
model and a diffusive model are compared with experiment data. The role of various correlation functions,
including higher order time correlation functions, in the interpretation of the underlying dynamics is discussed.

Introduction

Recent advances in single-molecule spectroscopy have spurred
much research on the dynamical behavior of single molecules.1-4

Chemical dynamics can now be probed on a single-molecule
basis. For example, enzymatic turnovers of single cholesterol
oxidase molecules have been observed in real time by monitor-
ing the emission from the enzyme’s fluorescent active site, flavin
adenine dinucleotide (FAD).5 Chemical kinetics (such as the
Michaelis-Menten mechanism), can account for the ensemble-
averaged behaviors; however, statistical analyses of the single-
molecule trajectories reveal fluctuations in the rate of the
activation step of the reaction. This dynamic disorder behavior
is beyond the scope of conventional chemical kinetics and
originates from slow fluctuations of protein conformations.5

Ensemble-averaged experiments would not distinguish this
dynamic variation of reaction rates from static heterogeneity.
In this work, we present theoretical models for statistical
analyses of single-molecule enzymatic dynamics. In this section,
we give an overview of recent theoretical work relevant to
single-molecule analyses.

Skinner and co-workers6,7 have conducted statistical analyses
of single-molecule spectral trajectories in order to understand
a pioneering experiment on single-molecule spectral diffusion
at cryogenic temperatures.8 The underlying dynamics of that
system is tunneling of two-level systems, which was described
by a two-state jump model,6-7 and analyzed with autocorrelation
functions of the transition frequency. Silbey and co-workers9

and Klafter and co-workers10 have also pursued this stochastic
approach to two-level systems.

Prompted by the room-temperature observations of double
exponential fluorescence decays of single dye molecules in DNA
complexes,11,12Geva and Skinner recast a two-state jump model
in terms of population distributions as a function of data
collection times.13 Similar to “motional narrowing” in molecular
spectroscopy,14 this approach allowed the extraction of the time
scale of conformational transitions of the systems. The two-

state jumping model is within the framework of a simple
reversible kinetic scheme; a more sophisticated two-state
jumping model involving non-Markovian dynamics has also
appeared.15

Of particular interest is the chemical dynamics of single
molecules. The first experimental effort in this area was the
ion channels studied by single channel recording.16 There has
been a large body of work on statistical analyses of the single-
channel trajectories.17 Most of the work has been in the
framework of chemical kinetics, analyzing the histograms of
the on- and off-periods of the ion channels. The usefulness
correlation functions have not yet been explored on these
systems. Yet these early works began the discussion of chemical
kinetics in terms of Poisson statistics of single-molecules, which
is key to the understanding of single molecule experiments.

Wang and Wolynes18 first discussed the role of analyses of
single-molecule trajectories in understanding chemical dynamics
(as opposed to chemical kinetics). Slow fluctuation of the
environment causing the fluctuation of the rate coefficient
(which is no longer constant) results in deviations from Poisson
statistics. A single-molecule experiment would be expected to
show non-Poisson effects causing reaction events to “bunch up,”
an effect called “intermittency”.18,19Wang and Wolynes pointed
out that when such non-Poisson statistics are observed and the
first-order moment of the probability is not enough to character-
ize the system, higher order moments contain more information.
Intermittency ratiossdefined as the ratio of the average of an
nth-order moment compared to the average of a first-order
moment raised to thenth powershave been formulated to
characterize the non-Poisson behavior.18

The non-Poisson statistics resulting from the fluctuating rate
coefficient is related to “dynamical disorder,” a subject reviewed
by Zwanzig.20 The rate coefficient itself can be viewed as
dependent on a stochastic control variable (such as barrier
height). A time-dependent rate coefficient can be described in
two ways: in terms of the control variables jumping between
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discrete values according to simple kinetics or in terms of a
continuum of states undergoing diffusive changes according to
a Langevin equation. For the former, transitions of the control
variable are described by a master equation for the probability
that the control variable has a specific discrete value. For the
latter, a Langevin equation characterized by a decay rate and
fluctuation amplitude describes the time dependence of control
variables. The probability distribution for the control variable
obeys the Fokker-Planck equation. Agmon and Hopfield first
introduced this latter approach in the context the ligand rebinding
in myoglobin where the rate constant depends on a protein
coordinate described by the Brownian motion of a harmonic
oscillator.21 Sumi and Marcus took a similar approach to
electron-transfer reactions,22 and Bagchi, Oxtoby, and Fleming
had a similar treatment for barrierless reactions in solution.23

In the above approach, the dynamical variable of the Langevin
equation is the rate coefficient or its control variable rather than
the nuclear coordinates whose variations ultimately cause the
rate fluctuation. In contrast, rate theories of chemical reactions
in solution take nuclear (reaction) coordinates as the dynamical
variables of the Langevin equation as in Kramer’s theory,24 or
the generalized Langevin equation,25-28 as in the Grote-Hynes
theory.29 These rate theories give constant rate coefficients
because the fluctuations of the nuclear coordinates occur at a
much faster time scale than that of the chemical reactions.

Molecular dynamics (MD) simulations of biomolecules30,31

are single-molecule “experiments” whose trajectory analyses
have yielded detailed information of molecular interactions and
their influence on chemical reactions. Wilson, Hynes, and co-
workers have pioneered MD simulations of solution phase
chemical reactions.32 Neria and Karplus have done MD simula-
tion of triosephosphate isomerase and shown that small structural
changes have large effects on the rate enhancement.33 The MD
trajectories allowed them to obtain the transmission coefficient
correction to transition state theory. Also, Chandler and co-
workers have performed a MD simulation of a photosynthetic
reaction center.34 The trajectory of the donor and acceptor energy
gap illustrated the dynamical disorder in rate on a single
molecule. Unfortunately, because of practical restrictions, the
single-molecule experiments have been limited to a much longer
time scale (milliseconds to tens of min), preventing direct
comparison of MD and experimentally measured single-
molecule trajectories.

In this paper we will recast dynamic disorder in terms of
trajectory analyses relevant to single-molecule real-time experi-
ments and compare different theoretical models with experi-
mental results. Dynamic disorder can appear in statistical
analyses of experimental observables but some analyses are
more informative than others. We present simulations of various
correlation functions based on different models. Finally, the
simulation results are compared with experimental results. The
issues of conformational dynamics and its influence on enzy-
matic dynamics are discussed.

Formulation

We consider a generalN-state kinetic scheme for the
population of statei, described by the master equation for the
probability densityPi(t),

where the rate of transition from statej to statei is kij(t), and

the sum spans the domain of statesi ∈ {1,...,N}. kij(t), is taken
to be time dependent in general, allowing for fluctuating rate
coefficients.Pi(t) represents the dynamic population (or prob-
ability) of the statei at a given timet. As a jump model, the
current state of the system can be viewed as a dynamical
trajectory between discrete states. We then write the function
I(t) to represent the fact that the system is in stateI∈{1,...,N}
at time t. A discrete trajectory in time,I(t), will represent
“microscopic” realization of the state of the system.

To analyze the statistical behavior ofI(t), we now consider
an ensemble of trajectories ofI(t). We denote the conditional
probability that the ensemble is in the statei at timet, assuming
the ensemble is in statei0 at earlier timet0, by Gii0 (t,t0). The
dynamics of this quantity is described by

with initial conditions

The conditional probabilities satisfy the composition and
completeness relations

and

We will consider the statistical fluctuations ofkij(t), viewing
them as random variables with respect to the average〈...〉.
Because of this, the conditional probabilitiesGii0 (t,t0) must be
viewed stochastic variables themselves, satisfying a stochastic
differential equation. We will assume that the time-independent,
steady-state limit exists and is given by

independent ofi0 andt g 0. This means that the system reaches
equilibrium at and after time zero. Because of this, general
averages are independent of time. Fort g 0,

whereAi is a general observable corresponding to statei. General
n-time correlation functions are written as

with tn g tn-1 g ‚‚‚ g t1 g 0. In this representation, the time
dependence is contained in the conditional probabilities,
Gi,i0 (t,t0).

If the system is ergodic, we may consider a single trajectory
I(t). In terms of the time average of the trajectory, we write the
n time correlation function as

d

dt
Pi(t) ) ∑

j*i

[kij(t)Pj(t) - kji(t)Pi(t)] (1)

d

dt
Gii0

(t,t0) ) ∑
j*i

[kij(t)Gji0
(t,t0) - kji(t)Gii0

(t,t0)] (2)

Gij(t0, t0) ) δij (3)

∑
i1

Gi2i1
(t2, t1)Gi1i0

(t1, t0) ) Gi2i0
(t2, t0) (4)

∑
i

Gii0
(t,t0) ) 1 (5)

Pi
eq ) lim

t0 f -∞
Gii0

(t,t0) (6)

〈A(t)〉 ) ∑
i,i0

〈AiGii0
(t,0)Pi0

eq〉 ) ∑
i

〈AiPi
eq〉 ) 〈A〉 (7)

〈A(n)(tn)‚‚‚A
(1)(t1)〉 ) ∑

in,‚‚‚,i1,i0

〈Ain

(n)Ginin-1
(tn,tn-1)Ain-1

(n-1)‚‚‚

Ai2

(2)Gi2i1
(t2,t1)Ai1

(1)Gi1i0
(t1, 0)Pi0

eq〉 (8)
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In this representation, the time dependence is contained inI(t).
In the single-molecule enzymatic experiment, the relevant

observable is the fluorescence signal from one of many different
possible states of the system. A given state is either fluorescent
or not. We choose the observableAi to beêi, whereêi ) 1 for
fluorescence “on” states andêi ) 0 for fluorescence “off” states.
The resulting fluorescence signal may be represented asê(t) )
êI(t), since at timet, the system is in stateI(t). In some cases,êi

) 1 for many different states and there is no means to
distinguish between these “hidden” states. Because of this, a
multi-state system obeying simple kinetics can appear to
describe a two-state non-Markovian system. We will expand
on this point in the flowing discussion.

To consider fluctuations about the equilibrium signal, we
define∆ê(t) ) ê(t)-〈ê〉, whose second-order correlation func-
tion is given by

and

with the definition,∆êi ) êi - 〈ê〉. Given a stochastic trajectory
of ê(t) ) êI(t), it is possible to generate a sequence of on-time
durations{τ1,τ2,...,τm,...}, for ê(t) ) 1. From this trajectory the
mean on-time〈τ〉 may be determined as well as the on-time
autocorrelation function

where we define∆τm ) τm - 〈τ〉. A comparison of this
correlation function andC2(t) will be presented in the Result
section.

Higher order correlation functions might contain more
information than the second-order correlation function. In
general, the fourth-order correlation function is

To simplify the analyses of experimental trajectories, we
assumeτ ) t2-t1 ) t4 - t3, and t ) t3 - t2, and present the
C4(t4, t3, t2, t1) with two variables,τ and t,

where

The analytical solutions and numerical simulations of the
above three correlation functions will be presented based on
three different models.

In the case of simple kinetics,kij(t) is independent of time
and no longer considered a stochastic variable. The expressions
for the averages are simplified considerably. For simplicity of
notation, it is possible to define the matrixK , whereKij ) kij(t)
when i * j, andKii ) -∑j*ikji(t) for the diagonal elements of
K . The equation for the conditional probability distribution
becomes the matrix equation,

with G(t0,t0) ) 1. In this case,G is no longer a stochastic
variable, and we may writeG(t,t0) ) eK (t-t0). Furthermore, with
[Peq] i ) Pi

eq, the vectorPeq is a zero eigenvector of the matrix
K , corresponding to the equilibrium population of the kinetic
scheme.

Two State 1×2 Model

We will now introduce three different kinetic models and
explore the behavior of correlation functions resulting from the
dynamics corresponding to the models. When ever possible we
include closed-form analytical expressions for the correlation
functions. In a later section we will discuss more complex
models. Initially we choose simple models that have funda-
mentally different structures and compare the qualitative
dependence of the correlation functions. The simplest model
that we consider is the two-state model described by the kinetic
scheme

Where nk
on will denote an “on” state,êk ) 1, and nk

off will

denote an “off” state,êk ) 0. In this case,ê ) (10) andK )

(-k21 k12

k21 -k12
). It follows that

where κ ) k12 + k21. With p ) k12/κ, we have Peq )

(p1 - p). Furthermore,〈ên〉 ) p for all n and 〈∆ê2〉 ) p - p2,

〈∆ê3〉 ) p - 3p2 + 2p3, and〈∆ê4〉 ) p - 4p2 + 6p3 - 3p4. For
the correlation functions, it follows that

and

We note thatC4(τ,t) has not dependence when the duty cycle
〈ê〉 of the ê(t) trajectory is 50% (p ) 0.5) because the second
term vanishes. For the 1×2 model, as a Markovian scheme
(constant rate coefficients), the on time correlationr(m) is only
a spike at zero time (r(m) ) 1 for m ) 0 andr(m) ) 0 for m
> 0).

2×2 Model

In this model we have two coupled two-state channels,
represented by the four-state kinetic scheme

〈A(n)(tn)‚‚‚A
(1)(t1)〉 )

lim
Tf∞

1
T∫

0

T

dt′AI(tn+ t′)
(n) AI(tn-1+t′)

(n-1) ‚‚‚AI(t2+t′)
(2) AI(t1+t′)

(1) (9)

C2(t) )
〈∆ê(t)∆ê(0)〉

〈∆ê2〉
(10)

〈∆ê(t)∆ê(0)〉 ) ∑
i,i0

〈∆êiGii0
(t,0)∆êi0

Pi0

eq〉 (11)

r(m) )
〈∆τm+m′∆τm′〉

〈∆τ2〉
(12)

C4(t4, t3, t2, t1) ) 〈∆ê(t4)∆ê(t3)∆ê(t2)∆ê(t1)〉/〈∆ê4〉 (13)

C4(τ, t) )
〈∆ê(t + 2τ)∆ê(t + τ)∆ê(τ)∆ê(0)〉

〈∆ê4〉
(14)

〈∆ê(t + 2τ)∆ê(t + τ)∆ê(τ)∆ê(0)〉 )

∑
i3,i2,i1,i0

〈∆êi3
Gi3i2

(t + 2τ,t + τ)∆êi2
Gi2i1

(t + τ,τ) ×

∆êi1
Gi1i0

(τ,0)∆êi0
Pi0

eq〉 (15)

d
dt

G(t,t0) ) KG (t,t0) (16)

n1
on {\}

k21

k12
n2

off (17)

G(t,0) ) eK t ) 1
κ(k12 + k21e

-κt k12 - k12e
-κt

k21 - k21e
-κt k21 + k12e

-κt ) (18)

C2(t) ) e-κt (19)

C4(τ,t) )

[(p2 - 2p3 + p4)e-2κτ + (p - 5p2 + 8p3 - 4p4)e-κ(2τ+t)]/

(p - 4p2 + 6p3 - 3p4) (20)
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The physical picture of the model is two slowly inter-converting
conformational states of the reactant that have different activa-
tion barriers.35 Initially, to limit the number of parameters
defining the model and to allow an analytic solution, we consider
the special case whereâ ) R, k′1 ) k1, andk′2 ) k2. In this
case, the kinetic scheme reduces to

It follows that we can write

and

The eigenvalues of the matrixK are{0,-2R,-κ+,-κ-}, where

κ( ) k1 + k2 + R ( γ andγ ) xR2+(k1-k2)
2. It follows that

If we definek(t) ) kl(t), where

it follows from eqs 7 and 8 that

and

k(t) represents the effective rate at any timet, since the system
is in one of the four states,I(t). The components of vectork
define the rate constant associated with each state of the system.
The fact that a nontrivial correlation exists here demonstrates
how a Markovian scheme can generate an effective non-
Markovian scheme when viewed as a collection of hidden states.

Here we see that the time dependence of the correlation function
is consistent with the rate of transformation between the two
schemesR. The following expressions for the correlation
functions can be explicitly evaluated:

and

Ther(m) of the 2×2 model will be simulated using a numeric
approach to be described later.

Introduction of Continuous Stochastic Control Variables

A simple model of the statistical fluctuations ofkij(t) can be
constructed by considering a set of stochastic control variables.
We will denote them byx(t) and assume thatkij(t) is defined
parametrically through the dependencekij(t) ) Fij(x(t)), where
Fij(x) is a specified function of the control variablex. We
describe the motion of the control variable by a Langevin
equation as used in Brownian motion theory,20

wheref(t) is a Gaussian random variable with white noise.〈f(t)〉
) 0 and〈f(t1)f(t0)〉 ) 2λθδ(t1 - t0) must be consistent with the
fluctuation-dissipation theorem. It is possible to generate a
characteristic stochastic trajectoryx(t) by numerically integrating
this equation. We represent this as

wherew(t) is a Wiener process36-38 satisfying〈dw(t)dw(t)〉 )
dt. For eacht, dw can be viewed as an independent Gaussian
random variable with variance dt. The conditional probability
density forx, P(x,t;x0,t0), satisfies the Fokker-Planck equation

This is an example where a Markovian process dw(t) (Weiner)
is used to generate a non-Markovian stochastic variablex(t).
With x(t) characterized, we are in a position to incorporate these
fluctuations in the kinetic model. The simplest way to achieve
this is to modify the 1×2 model to include a time-dependent
forward rate.

Diffusive Model

Consider the following two-state model with the stochastic
rate constant,k21(t) ) k21

0 e-x(t), where x(t) is a stochastic
control variable. Because the control variable at time t will be
correlated with the value at time 0, the resulting dynamics will
be non-Markovian by construction. The kinetic scheme for this
system may be represented as

n1
on {\}

k1

k′1
n3

off

RvVâ RvVâ

n2
on {\}

k2

k′2
n4

off (21)

K ) (-(k1 + R) R k1 0
R -(k2 + R) 0 k2

k1 0 -(k1 + R) R
0 k2 R -(k2 + R)

)
(23)

ê ) (110
0

) (24)

Peq ) (1/4
1/4
1/4
1/4

) (25)

k)(k1

k2

k1

k2
) (26)

〈k(t)〉 ) 1
2
(k1 + k2) (27)

〈k(t)k(0)〉 ) 1
4
((k1 + k2)

2 + (k1 - k2)
2e-2Rt) (28)

C2(t) ) e-κ+t

2γ
[R(e2γt - 1) + γ(e2γt + 1)] (29)

C4(τ,t) ) 1

4γ2

[2R2(e-2κ+τ + e-2κ-τ)-2Rγ(e-2κ+τ - e-2κ-τ)

+(k1 - k2)
2e-2Rt-2κ+τ(2e2γτ(e2Rt-1)+(e4γτ + 1)(e2Rt + 1))]

(30)

d
dt

x(t) ) -λx(t) + f(t) (31)

dx(t) ) -λx(t)dt + x2θλdw(t) (32)

∂

∂t
P ) ∂

∂x
(λxP) + λθ ∂

2

∂x2
P (33)

n1
on {\}

k21
0 e-x(t)

k12
0

n2
off (34)
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This scheme is called “diffusive” or “Agmon-Hopfield”
dynamics.21 The rate coefficient matrix can be written as

and the observable parameters are given by

The control variable is described by a Gaussian random process
characterized by zero mean,〈x(t)〉 ) 0, and the correlation time
1/λ and strengthθ:

It then follows thatk21(t) is a Gaussian random process with

and

The correspondingC2(t), C4(τ,t) and r(m) will be numerically
simulated. Here we see that the rate constant is correlated over
a “continuum of time scales” because of the exponential of an
exponential occurring in eq 39, in contrast to a few exponen-
tionals for the 2×2 model.

Numerical Technique

Viewed as a Markovian process, the single molecule trajectory
I(t) is simulated using Monte Carlo simulation techniques. This
is achieved by stepping in time in discrete steps of dt. At any
point in timet, if the system is in the statei, the probability of
making a transition to another state in time dt isΓidt, whereΓi

) ∑j*ikji. A decision to make a transition is determined from a
uniformly distributed random number. Given that a transition
has occurred, the probability for the new condition beingj is
kji/Γi. A uniformly distributed random number again determines
the choice of this final state. This procedure generates a
trajectory that has statistical time dependence consistent with
that of the distribution given by eq 1.

The incorporation of time-dependent rate constants is straight-
forward. While we are stepping in time, we integrate the
Langevin equations describing the time dependence of the
control variables,x(t) (see eq 31). From the characteristic
trajectory, we are able to evaluate relevant correlation functions
and averages. If we are interested in quantities that only involve
Gij(t,t0), it is possible to integrate the coupled set of equations,
eqs 2 and 31, where the coupling occurs through the rate-
constant dependence onx(t).

Theoretical Results

We can now compare analytical and simulation results of
the three models presented above. Our goal is to investigate
the qualitative difference between these simple models in hope
that through comparison to experiment, we will be able to
distinguish between them.

Figure 1A and B shows the linear and logarithmic plots of
the second-order correlation function ofê, C2(t), for the 1×2,
2×2, and diffusive models. TheC2(t) of the 1×2 model is a
single-exponential decay (eq 19). While the 2×2 and the

diffusive models clearly differ from the single exponential decay,
the difference between the two is most obvious at long time
intervals (C2(t) < 0.1), as seen clearly in the log plot. We used
k21 ) 1 andk12 ) 1 for the 1×2 model;.k1 ) 2.0, k2 ) 0.4,
andR ) 0.15 for the 2×2 model;λ ) 0.25 andθ ) 0.5 for the
diffusive model. These parameters were chosen so that the
decays would be on the same time scale. The multiexponential
character of the diffusive model relative to the 2×2 model is
evident here. To distinguish between the diffusive and 2×2
models it is necessary to have an accurate signal at longer times
where the correlation has significantly diminished in value.

In Figure 2A and B, we display the on-time autocorrelation
function, r(m) for the three models.r(m) for 1×2 model is a
spike at zero time. The two other models show similar
dependence for the range of 0e m e 2, and differ at largerm.
It would be difficult to distinguish between a 2×2 model and
a diffusive model using this measure. The 1×2 model is easily
distinguished from the others, clearly displaying the non-
Markovian behavior.

Figure 3A and B shows the plots of the fourth-order
correlation functions ofê, C4(τ,t), for the 2×2 model, as a
function of τ for the values oft ) 0, 0.5, 1.0, 1.5, and 2.0.
Compare this toC4(τ,t) for the 1×2 model, which is not
dependent ont whenp ) 0.5. Figure 4A and B shows the plots

K ) (-k21
0 e-x(t) k12

0

k21
0 e-x(t) -k12

0 ) (35)

ê ) (10) (36)

〈x(t)x(0)〉 ) θe-λt (37)

〈k21(t)〉 ) k21
0 e1/2θ (38)

〈k21(t)k21(0)〉 ) (k21
0 )2eθ(1+e-λt) (39)

Figure 1. A. Linear plot of the calculated autocorrelation functions
of ∆ê, C2(t), for the 1×2 model (dotted line, withk21

o ) k12
o ) 1), the

2×2 model (dashed line, withk1 ) 2, k2 ) 0.4, andR ) 0.15) and the
diffusive model (solid line, withk12

o ) k21
o ) 1, λ ) 0.25,θ ) 0.5).

B. Logarithmic plot of the sameC2(t).

Single-Molecule Enzymatic Dynamics J. Phys. Chem. A, Vol. 103, No. 49, 199910481



of theC4(τ,t) for the diffusive model, as a function ofτ for the
values of t ) 0, 0.5, 1.0, 1.5, and 2.0. Thet-independent
C4(τ,t) for the 1×2 model is also shown for comparison. A
comparison ofC4(τ,t) of the 2×2 model and the diffusive model
shows similar behavior, especially in the short time range where
C2(t) > 0.1. In the long time scale whereC4(τ,t) < 0.1, we see
significant differences in the qualitativet dependence of the
two models.

From the results presented above, it is easy to identify the
deviation from the simplest 1×2 model. Although the 2×2
model and the diffusive model appear to be similar on the coarse
scale, they are significantly different on the fine scale, especially
in a longer time scale. The time dependence of the diffusive
model and the 2×2 model can be best seen with the t
dependence ofC4(τ,t). We note that simulation of the 2×2 model
is parameter dependent, and we have only taken an exemplary
set of parameters. One can make the kinetic scheme more
complex by having more channels (3×2 or 4×2 models). The
more complex kinetics scheme will of course require more
parameters. The 2×2 and the diffusive model demonstrate two
limiting cases. The goal of the statistical analyses of the
experimental trajectories is to gain understanding of qualitative
features of the distribution of the conformational states pertinent
to enzymatic reactions by verifying the validity of these models.

Experimental Results

We now briefly describe a single-molecule enzymatic turn-
over experiment. More detailed experimental descriptions have
appeared elsewhere.5 Cholesterol oxidase (COx) from BreVi-
bacterium sphaeroidesis a monomeric protein of 53 KDa that
catalyzes the oxidation of cholesterol oxidase by oxygen. Flavin
adenine dinucleotide (FAD) is the active site tightly bound to
the center of the protein. The oxidized state of FAD absorbs at
450 nm and emits fluorescence peaked at 520 nm, whereas the
reduced state of FAD is not fluorescent. During cholesterol
oxidation in an enzymatic turnover cycle, FAD is first reduced
to FADH2, and then reoxidized by oxygen. The FAD switches
between the oxidized form and the reduced form in each
enzymatic turnover cycle described by the Michaelis-Menten
mechanism:

Figure 2. A. Linear plot of the simulated autocorrelation function of
on-times,r(m), as a function of turnover index number,m. The results
are based on the 1×2 model (unfilled squares, a spike only atm ) 0),
the 2×2 model (black squares), and the diffusive model (round dots).
B. Logarithmic plot of the samer(m).

Figure 3. A. Linear plot of the simulated fourth order correlation
functions ofê, C4(τ,t), as a function ofτ for t ) 0, 0.5, 1.0, 1.5, 2.0,
derived from the 2×2 model. For comparison, the solid line shows the
result of the 1×2 model. B. Logarithmic plot of the sameC4(τ,t).
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where S and P represent cholesterol substrate and oxidized
product, respectively. The Michaelis-Menten mechanism has

been recasted in terms of single-molecule kinetic analyses. The
on- and off-time probability distributions have been derived for
any substrate concentrations5 k21. The on- or off-time histograms
are scrambled and less sensitive to dynamical fluctuations than
correlation functions.

Under the condition that the concentration of the substrate is
high, and/or the substrate is slowly reacting (such as 5-pregene-
3â-20R-diol, a derivative of cholesterol) so that the activation
steps (k21 andk12) are rate limiting, the kinetic scheme reduces
to the two-state (1×2) model in eq 17. This is the situation in
which dynamical changes of protein conformation directly
influence the activation of the enzymatic reaction, a situation
on which we want to focus.

The COx molecules at low concentration (10-9 M) are
confined in agarose gel containing 99% buffer solution contain-
ing 2mM of 5-pregene-3â-20R-diol. The COx molecules were
tumbling freely, but the gel restricted their translational diffusion.
The single-molecule enzymatic turnovers are observed in real
time by monitoring the emission-intensity of the FAD in a single
COx molecule.5 Figure 5 shows a portion of a typical single
COx emission-intensity trajectory. The trajectories were suf-
ficiently long with more than 500 hundred turnovers, permitting
detailed statistical analyses. The trajectories were converted to
quantized data by removing the measurement noise. Correlation
functions were derived from these filtered trajectories.

Figure 6A and B shows experimentally determinedC2(t) of
a COx molecule (molecule A). To compare the experimental
data with the theoretical results, we must find the error bound
in the measured correlation functions (dashed lines in Figure
6). It is important to note that the error bars result not from the
measurement noise but from the finite lengths of trajectories.
At short times, the error bars are smaller because of more
averaging along the trajectory. In the appendix, we present the
analytical expressions of the standard deviation (s.d.) of the
correlation functions as a function of time that were used to
generate the error bounds ((s.d.).

According to the simple two-state (1×2) model, a single-
exponential decay (dotted line) is expected with a decay rate
being the sum of the forward (k21) and backward rates (k12).
However, we found that the measuredC2(t) is clearly not single-
exponential. The multiexponential decay of the autocorrelation
function can arise from the dynamic disorder ofk21 or k12.

Figure 4. A. Linear plot of the simulated fourth order correlation
functions ofê, C4(τ,t), as a function ofτ for t ) 0, 0.5, 1.0, 1.5, 2.0,
derived from the diffusive model. For comparison, the solid line shows
the result of the 1×2 model. B. Logarithmic plot of the sameC4(τ,t).

Figure 5. Real-time observation of enzymatic turnovers of a single COx molecule catalyzing oxidation of sterol molecules. This is a portion of an
emission intensity trajectory recorded in 13.1 ms per data point. The emission exhibits stochastic blinking behavior as the active site FAD toggles
between oxidized (fluorescent) and reduced (not fluorescent) forms, each on-off cycle corresponding to an enzymatic turnover. The substrate is
cholesterol at 0.2 mM concentration. Quantized trajectories are obtained by removing the shot noise before correlation functions are evaluated.
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To find out whether the dynamic disorder is ink21 or k12, we
evaluate the autocorrelation function, introduced previously,5

of the on-times or off-timesr(m). The advantage ofr(m) of
on-time (or off-time) is that it is only sensitive to forward (or
backward) reaction. Figure 7 shows ther(m) of moleculeA’s
on-times. If there is no dynamic disorder,r(m) is expected to
be only a spike atm ) 0. The fact thatr(m) > 0 at m > 0
indicates the fluctuation ofk21. In contrast,r(m) for the off-
time of molecule A (not shown) is a spike atm ) 0, proving
that there is no dynamic disorder for the backward reaction.
Ther(m) in Figure 7 is similar to the simulated results in Figure
2. Althoughr(m) is sensitive to identifying any non-Markovian
behaviors, it is not particularly sensitive to distinguishing
different models of dynamic disorder. Higher order correlation
functions have the potential to distinguish different models.

Figure 8A and B shows the experimentally determined
C4(τ,t) of molecule A with its error bounds (see Appendix) for
t ) 0, clearly deviating from the 1×2 model. Figure 9 shows
the t dependence ofC4(τ,t). For comparison, theC4(τ,t) of the
1×2 model is also shown. Thet dependence ofC4(τ,t) for the
1×2 model arises when the duty cycle of the trajectory is not
50% (p ) 0.25 for moleculeA) (eq 20). Simulations (Figures
3B and 4B) show that theC4(τ,t) has strongert dependence for
the diffusive model than the 2×2 model. The experimentalC4-
(τ,t) is not capable of distinguishing between the two models.

Every molecule in the same system showed similar correlation
functions, although we have observed static disorder.5 For
example, Figures 10 and 11 show theC2(t) andC4(τ,t) at t ) 0

Figure 6. A. Molecule A’s C2(t) (dots) determined experimentally.
The error bounds (dashed line) were obtained with the procedure in
the Appendix. For comparison, theC2(t) of the 1×2 model is plotted
on the same scale (dotted line). B. Logarithmic plot of the sameC2(t).

Figure 7. Molecule A’s autocorrelation function of on-timesr(m) as
a function of turnover index numberm. This result proves that there is
dynamic disorder ink21.

Figure 8. A. MoleculeA’s C4(τ,0) (dots) determined experimentally.
The error bounds (dashed line) were obtained with the procedure in
the Appendix. For comparison, theC4(τ,0) of the 1×2 model is plotted
on the same scale (dotted line). B. Logarithmic plot of the sameC4-
(τ,0).
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for moleculeB, respectively. The error bounds are wider because
of the shorter trajectory. Figure 12 shows thet dependence of
C4(τ,t) for molecule B. With the duty cycle close to 50% (p )
0.45), there is littlet dependence for the 1×2 model.

Fitting of Experimental Results

Having established the qualitative behavior of theC2 andC4

correlation functions corresponding to various models, in this
section we demonstrate the ability to fit the experimental data
directly. As a measure of fit, we define the goodness of fit
parameter,

where the “meas” refers to measured to correlation functions
determined from measured values, while the “model” refers to
correlation functions determined from models. We takeN2 )
200,∆t2 ) 10 ms,N4τ ) 200,∆τ ) 10 ms,N4t ) 10, and∆t
) 20 ms. These values are chosen to cover the time range where
the correction functions show significant structures. We consider
three models whose parameters we adjust to minimizeø2. The
first is a 2×2 model of the form

Here we setk′1 ) k′2 ) k′, corresponding to no dynamical
disorder in the reverse reaction rate.

The next model is the diffusive model defined in the previous
section by eq 34. Using an automated nonlinear least squares
minimization algorithm for the finite 2×2 models, and varying
parameters by hand to minimizeø2 for the diffusive model, we
find values forø2 displayed in Table 1. The corresponding
parameters for the 2×2 model are displayed in Table 2, and
for the diffusive model in Table 3.

For comparison, if we use a 1×2 model to fit the short time
behavior ofC2 to determineκ and the measured value of〈ê〉 to
determine an estimate of the forward and backward rate
constants, we obtain a value ofø2 ) 23.95 for moleculeA and
a value ofø2 ) 6.21 for molecule B. The poor fit proves the
presence of dynamic disorder.

For both moleculesA and B, the 2×2 model generates
significantly differentk1 andk2 (more than factor of 5 differ-
ence). Similarly, the fittings with the diffusive model result in
standard deviations ofk21 being 110% and 190% ofk21 for

Figure 9. Logarithmic plot of moleculeA’s C4(τ,t) at t ) 0, 100,
200, and 300 ms. simulations ofC4(τ,t) for the 1×2 model are also
shown. The duty cycle of moleculeA is p ) 0.25.

Figure 10. A. Molecule B’s C2(t) (dots) with error bounds(dashed
lines). For comparison, theC2(t) of the 1×2 model is plotted on the
same scale (dotted line). B. Logarithmic plot of the same.C2(t).

TABLE 1: Resulting Values of ø2 from Data Fitting

molecule model ø2

A 2×2 0.479
A diffusive 0.925
B 2×2 0.338
B diffusive 0.432

TABLE 2: Fitted Rates for the 2×2 Model in Units of s-1

molecule

A B

k1 9.00 10.9
k2 1.36 1.30
k′ 1.03 4.43
R 0.130 0.610
â 0.0417 0.370

ø2 )
1

N2
∑
i)0

N2

(C2
meas(i∆t2) - C2

model(i∆t2))
2/σ2

2(i∆t2) +

1

N4τN4t
∑
i)0

N4τ

∑
j)0

N4t

(C4
meas(i∆τ,j∆t) - C4

model(i∆τ,j∆t))2/σ4
2(i∆τ,j∆t)

(41)

n1
on {\}

k1

k′ n3
off

RvVâ RvVâ

n2
on {\}

k2

k′ n4
off (42)
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molecules A and B, respectively. The fittings show the
significant influence of conformations on the rate of the
activation step.

We have also tried to fit the data with a 3×2 model:

The 3×2 fits haveø2 < 1, similar to the situations of the 2×2
and diffusive models, but not significantly better. There is a
large uncertainty of the fitted rate coefficients as expected.

Figure 11. A. MoleculeB’s C4(τ,0) (dots) with error bounds (dashed
lines). For comparison, theC4(τ,0) of the 1×2 model is plotted on the
same scale (dotted line). B. Logarithmic plot of the sameC4(τ,0).

Figure 12. Logarithmic plot of moleculeB’s C4(τ,t) at t ) 0, 100,
200, and 300 ms. Simulations ofC4(τ,t) for the 1×2 model are also
shown. The duty cycle of moleculeB is p ) 0.45.

Figure 13. A. Logarithmic plot of the fittedC2(t) for moleculeA based
on the 2×2 and diffusive models. The error bounds are drawn from
the experimental data plus/minus the standard deviation. Both models
fit the data well. The fitted parameters are in Tables 2 and 3. B. The
same for moleculeB.

TABLE 3: Fitted Rates for the Diffusive Model in Units of
s-1

molecule

A B

k0
12 1.20 4.73

k0
21 3.80 3.87

λ 0.100 86.0
θ 0.80 1.50

n1
on {\}

k1

k′ n4
off

RvVâ RvVâ

n2
on {\}

k2

k′ n5
off

γvVη γvVη

n3
on {\}

k3

k′ n6
off

(43)
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With ø2 < 1 for both the 2×2 model and the diffusive models,
fitted correlation functions fall well within the statistical error
bars of the experimental correlation functions. This is graphically
shown in Figures 13A and B. The fittings by both the 2×2
model and the diffusive model are equally good. Because of
this, we cannot distinguish which model is more appropriate.
To do so, we must have longer trajectories and/or more
sophisticated analyses of trajectories.

Conclusions

The Michaelis-Menten mechanism, although correct in
describing the averaged behaviors of large ensembles of
molecules, does not provide a precise real-time picture on a
single-molecule basis for cholesterol oxidase and perhaps other
enzymes. Statistical analyses of the single-molecule measure-
ment have revealed dynamic disorder in the rate of the activation
step. This was attributed to slow conformational fluctuations
otherwise hidden in conventional measurements done on large
ensembles of molecules. Such a slow conformational fluctuation
was also directly observed by spectral diffusion of the FAD on
a similar time scale.5

We have presented a general methodology for simulating
single-molecule trajectories with either Markovian or non-
Markovian behavior. We have presented three theoretical models
and relate them to the observables of single-molecule experi-
ments. The simulations of correlation functions based on
different models have been compared with the experimental
results. The simple two-state model, corresponding to the
Michaelis Menten mechanism with saturation of substrate, is
inconsistent with the experimental observations. We conclude
that there must be more than one conformer involved. It has
been well established that proteins have many conformational
substates.40,41 The question is, what are the distribution of the
functional important conformational states and the distribution
of their rates? We have presented two non-Markovian models
for two limiting cases, with either two conformations (2×2
model) or a continuous distribution of conformations (diffusive
model). Although there are noticeable differences in the
autocorrelation functions derived from the two models, we are
not yet in a position to determine which one of the two models
or an intermediate between the two models is the underlying
mechanism. The answer to this issue requires longer trajectories
and/or more sophisticated analyses of trajectories. For example,
the replica correlation functions have been put forward for a
similar purpose.42

The conformational fluctuations influencing the reaction rate
can be either global protein conformational changes or local
conformational changes at the active site. The microscopic
details of the conformational states are unknown, except that
the barrier heights between the states are relatively high (15-
20 kcal/mol assuming an Arrhenius process). It is likely that
these slow fluctuations might have physiological significance.39

Single-molecule experiments and statistical analyses will provide
highly detailed information of the dynamics and functions of
enzymes.
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Appendix

Here we discuss how to obtain the error bounds for the
experimentally determinedC2(t) and C4(τ,t). For a trajectory
of ê(t) with a finite length ofT, we estimate the two-time
correlation functionF2(t) ) 〈∆ê(t)∆ê(0)〉 and the four-time
correlation functionF4(τ,t) ) 〈∆ê(2τ + t)∆ê(τ + t)∆ê(τ)∆ê(0)〉
using the mean estimators:

and

For the purpose of estimating the errors in these quantities, we
consider the standard deviation of the mean given by

and

for the two- and four-time correlation functions, respectively.
In these expressions we define the variance estimators

and

The expression for the standard deviation of the mean is
dependent on the number of independent samples ofê(t) in the
interval (0,T-t) in the case ofF2(t) and (0,T-2τ-t) in the case
of F4(τ,t). To estimate this quantity, we use a correlation time
scale of 4/κ, where κ is determined from the short time
dependence ofFh2(t). The number of independent samples is then
given byκ(T-t)/4 for the case ofF2(t), andκ(T-2τ-t)/4 for the
case ofF4(τ,t). The error bounds in Figures 6, 8, 10, and 11
were generated in this manner.
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